If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+3b-22=0
a = 1; b = 3; c = -22;
Δ = b2-4ac
Δ = 32-4·1·(-22)
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{97}}{2*1}=\frac{-3-\sqrt{97}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{97}}{2*1}=\frac{-3+\sqrt{97}}{2} $
| -1/2(-c-8)=66 | | 3(7x-6)-x=-118 | | T=2d/3 | | r×5.5=18.2 | | 2w-5=27 | | 17x3=x | | .25(-3y-8)=13 | | x+4=4x+8+7x-35=180 | | 3w-6=8w+4 | | 5x+100=20 | | 12x+5=92 | | -243=-9(10+p) | | 2(x+3)-6=5x+9 | | x-49/6=5/6 | | 113=23t+213 | | 8(x-3)+14=2(4x5) | | 7x+1=1x-7 | | -10=w/3-7 | | 7x-3=6+6x | | 48-3x=30 | | x+4=4x+8+7x-35 | | -2b=8.6 | | 15-r=2 | | 11x+7=127 | | 11/40=1+1/4x | | 15x=67.5 | | 8-5y=53 | | 7x8=× | | 1/3(9x+12)=28 | | 6x+2=50° | | 2x+3x-6=15 | | −(n+3)=−n−10 |